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In these notes we show how to construct a solution to the linearised Einstein field equations using
a harmonic C4 complex scalar field on spacetime.
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1 Notational Preliminaries

q

These notes have been written in the language of exterior differential forms, strongly influenced by [1] where
most of the notation and conventions can be found. A brief summary of notation pertinent to these notes
is given here.

Let M denote a 4-dimensional orientable Lorentzian manifold equipped with metric tensor field g

of signature (−,+,+,+). Let {ea} denote a set of local g-orthonormal coframes on M with dual
frame {Xb} such that ea(Xb) = δab and

g = ηabe
a ⊗ eb = −e0 ⊗ e0 + e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3

with ηab = diag(−1, 1, 1, 1). Associated with g is the inverse metric tensor

g−1 = ηabXa ⊗Xb = −X0 ⊗X0 +X1 ⊗X1 +X2 ⊗X2 +X3 ⊗X3

with ηabηbc = δac . The tensors g, g−1 establish an isomorphism between TM and T ∗M which we
denote for convenience with a ‘tilde’:

X̃ ≡ g(X,−) ≡ g(X,Xa)e
a and α̃ ≡ g−1(α,−) ≡ g−1(α, ea)Xa

for any X ∈ ΓTM, α ∈ ΓT ∗M. A simple but useful identity involving the coframe and the interior
derivative with respect to frame is the following:

ea ∧ iXa
α = pα ∀α ∈ ΓΛpM. (1)

The basis {ea} provides the canonical local volume form ⋆1 = e0 ∧ e1 ∧ e2 ∧ e3 ∈ ΓΛ4M. This
induces the Hodge map ⋆, a linear isomorphism between the vector spaces of p-forms and (4 − p)-
forms on M defined through the relations

⋆(α ∧ X̃) = iX ⋆ α and ⋆ (fα) = f ⋆ α

for any α ∈ ΓΛpM and f ∈ F(M). Let ∇ denote the unique Levi-Civita connection on M satisfying:
∇ = ea ⊗∇Xa

∇X(fY + gZ) = (∇Xf)Y + f∇XY + (∇Xg)Z + g∇XZ (linearity)

∇fX+gY Z = f∇X + g∇Y Z (F-linearity)

∇X [α(Y ) ] = (∇Xα)(Y ) + α(∇XY ) (commutes with contractions)

∇Xg = 0 (metric compatibility)

TX,Y = ∇XY −∇Y X − [X,Y ] = 0 (torsion-free)

for any X,Y, Z ∈ ΓTM, f, g ∈ F(M) and where TX,Y denotes the torsion operator of ∇. Cartan’s
first structure equation can be written using differential forms in terms of the exterior derivative d:

T a = dea + ωa
b ∧ eb

where {T a}, {ωa
b} denote a set of torsion 2-forms and connection 1-forms respectively defined by1

T a(X,Y ) =
1

2
ea(TX,Y ) and ∇Xa

Xb = ωc
b(Xa)Xc.

Since ∇ is torsion-free, this clearly yields T a = 0 and it can be shown this implies [1]

d ≡ ea ∧∇Xa
. (2)

1The properties of ∇ can be used to induce the action of ∇ on the g-orthonormal coframe {ea} (see 15).
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The connection ∇ also defines the curvature operator RX,Y of ∇:

RX,Y = HessX,Y − HessY,X = [∇X ,∇Y ]−∇∇XY +∇∇Y X = [∇X ,∇Y ]−∇[X,Y ] (3)

for any X,Y ∈ ΓTM, in terms of the Hessian operator

HessX,Y ≡ ∇X∇Y −∇∇XY ,

and where the last equality follows from ∇ being torsion-free and the F-linearity of ∇. Note that the
curvature operator applied to a function f on M vanishes:

RX,Y (f) = [∇X ,∇Y ]f − (∇∇XY +∇∇Y X) f = ([X,Y ]−∇XY +∇Y X) f = 0

by virtue of ∇ being torsion free. From (3), this implies that – when acting on functions on M – the
Hessian operator is symmetric:

HessX,Y (f) = HessY,X(f) ∀X,Y ∈ ΓTM, f ∈ F(M). (4)

A Lorentzian manifold is denoted flat if and only if its curvature vanishes: RX,Y = 0 for all X,Y ∈
ΓTM. The curvature operator is used to define the (3, 1) curvature tensor R of ∇:

R(X,Y, Z, α) = α(RX,Y (Z) ). (5)

It can be shown that the curvature tensor satisfies the symmetry relation [3]

R(X,Y, Z, α) = R(Z, α̃,X, Ỹ ). (6)

The Hodge map ⋆ and exterior derivative d enable us to define the coderivative2 δ ≡ ⋆d⋆ on M. With
respect to the symmetric product3 on p-forms having compact support:

(α, β)M ≡
∫
M

α ∧ ⋆β ∀α, β ∈ ΓΛp
CM,

the coderivative is the formal adjoint of the exterior derivative:

(dα, β)M = (α, δβ)M ∀α ∈ ΓΛp
CM, β ∈ ΓΛp+1

C M.

Using (2) and properties of the Hodge map, it can be shown that the coderivative can be related to the
connection on M via [1]:

δ ≡ −iXa∇Xa
. (7)

The exterior derivative and coderivative define the Hodge Laplace operator4 LapH , a (hyperbolic)
differential operator acting on differential forms5:

LapH ≡ −(δd+ dδ). (8)

This is not the only Laplacian that may be defined on M; the rough Laplacian LapR can be defined
as the trace of the Hessian operator:

LapR ≡ tr(HessX,Y ) = ηab HessXa,Xb
= HessXa,Xa = ∇Xa∇Xa −∇∇XaX

a . (9)

The final differential operator associated with the connection ∇ that we shall introduce is the divergence
operator which, for any covariant symmetric rank-two tensor T on M is given by

Div(T) = (∇XaT)(X
a,−). (10)

2More generally, on an n-dimensional Lorentzian manifold the coderivative is given by δ ≡ ⋆−1d ⋆ η where ⋆−1 is the
inverse Hodge map and η is an involution operator defined by ηα = (−1)pα for any α ∈ ΓΛpM.

3If M is a Riemannian manifold then this product is in fact an L2 inner product on p-forms having compact support.
4It also goes by the names Hodge-de Rham and Laplace-de Rham.
5The Hodge Laplace operator is self-adjoint with respect to ( , )M: (LapHα, β)M = (α,LapHβ)M for any α, β ∈

ΓΛp
CM. If M is Riemannian then, with these conventions, LapH has negative eigenvalues.
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2 Two Identities á la Weitzenböck

q

On a Riemannian manifold, a Weitzenböck identity expresses a relationship between two different elliptic
second-order differential operators, a common example being the two different Laplace operators that may
be defined on differential forms on a Riemannian manifold. We extend this notion to discuss the difference
between the Hodge Laplacian and the rough Laplacian acting on a both a function and a differential
1-form on M. Before we begin, we discuss the action of ∇ of the coframe {ea} which provides us
with a useful identity. Since ∇ commutes with contractions and ea(Xb) = δab , we have

∇Xa

[
eb(Xc)

]
= 0 = (∇Xa

eb)(Xc) + eb(∇Xa
Xc) =⇒ (∇Xa

eb)(Xc) = −eb(∇Xa
Xc).

Therefore, using (1) yields the useful result:

∇Xa
eb = ec ∧ iXc

∇Xa
eb = (∇Xa

eb)(Xc)e
c = −eb(∇Xa

Xc)e
c. (11)

3 The Linearised Einstein Field Equations

q

It can be shown [2] that the vacuum Einstein field equations on spacetime M endowed with metric g
can be linearised about a flat Minkowski spacetime metric η by finding solutions to:

Lap(η)
R (ψ) = 0 and Div(η)(ψ) = 0 (12)

from some complex covariant rank two tensor ψ. The tensor ψ can then be used to construct the
linearised metric g = η+ h where h (the perturbation of η on M) is given by

h = Re(ψ)− 1

2
tr
[

Re(ψ)
]
η.

The operators Lap(η)R and Div(η) are the rough Laplacian and divergence operator respectively (see
appendix 1 for further details). We adopt the notation that subscripts on differential operators are used
to indicate with which metric the operators are to be associated (i.e. in this case, they are defined by
the Levi-Civita connection associated with the flat Minkowski metric η and not g).

4 Constructing Solutions

q

In this section we outline a procedure to construct solutions to (12) from a complex scalar field α.
Since the solutions are to be established on a flat Minkowski spacetime endowed with metric η, the
curvature operator is identically zero: R

(η)
X,Y = 0. Consequently, using (15) and (25), the rough

Laplace operator and connection acting upon α or on any 1-form ω ∈ ΓΛ1M commute:

Lap(η)
R (∇(η)α) = ∇(η)

[
Lap(η)

R (α)
]

and Lap(η)
R (∇(η)ω) = ∇(η)

[
Lap(η)R (ω)

]
.

Repeated application of this result gives:

∇(η)∇(η)
[
Lap(η)

R (α)
]
= ∇(η)Lap(η)R (∇(η)α) = Lap(η)

R (∇(η)∇(η)α) = Lap(η)
R (∇(η)dα) (13)

where we have used (21). If we define a tensor ψ on M by:

ψ ≡ ∇(η)dα (14)
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then (22) implies that ψ is a covariant symmetric rank-two tensor which is traceless if α is harmonic
and so it qualifies as a candidate solution for (12). From (13), we see that

Lap(η)
R (α) = 0 =⇒ ψ is also traceless and Lap(η)R (ψ) = 0.

Furthermore

Div(η)(ψ) = Div(η)(∇(η)dα) = Lap(η)
R (dα) = d

[
Lap(η)

R (α)
]

using (23) and (25) respectively. Thus, if α is harmonic then ψ is also divergence-free. If we note
that using (15) and (8) we have

LapR(α) = LapH(α) = −(dδ + δd)α = −δdα,

this implies LapR(α) = 0 is equivalent to δdα = 0. Combining these results we reach the following
method to construct solutions to the linearised vacuum Einstein field equations:

Proposition

Let α be a C4 differentiable complex scalar field on a 4-dimensional orientable Lorentzian
manifold M equipped with metric g and Levi-Civita connection ∇. A linearisation of g about
a flat Minkowski spacetime metric η on M determines the linear metric g = η + h in terms
of h: some perturbation of η on M. If α is harmonic then it satisfies the linearised source-free
Einstein field equations:

δdα = 0 =⇒ Lap(η)
R (ψ) = 0 and Div(η)(ψ) = 0 where ψ = ∇(η)dα

in terms of the covariant symmetric rank two tensor ψ. This may be used to construct h and
since ψ is trace-free by construction, the linearised metric is given by

g = η+ h = η+ Re(ψ).
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A Laplace Operators Acting on a Function

q

Proposition

Let f be a (complex) function on a 4-dimensional orientable Lorentzian manifold M equipped
with metric g and Levi-Civita connection ∇. The action of the Hodge Laplace operator is
identical to that of the rough Laplace operator acting on f :

LapR(f) = LapH(f). (15)

Proof: Let f be a (possibly complex) function on M. Since δf = 0 for all functions f , (8)
gives:

LapH(f) = −(dδ + δd)f = −δdf = iXa∇Xa
df = iXa∇Xa

[
eb ∧∇Xb

f
]

= iXa

[
∇Xa

eb ∧∇Xb
f + eb ∧∇Xa

∇Xb
f
]

= iXa∇Xae
b ∧∇Xb

f + ηab ∇Xa∇Xb
f

= iXa∇Xa
eb ∧∇Xb

f + ∇Xa
∇Xaf

= iXa

[
−eb(∇Xa

Xc)e
c
]
∧∇Xb

f + ∇Xa
∇Xaf

= −eb(∇XaXc) η
ac ∧∇Xb

f + ∇Xa∇Xaf

= −eb(∇Xa
Xa) · ∇Xb

f + ∇Xa
∇Xaf

= −∇∇XaX
af + ∇Xa

∇Xaf =
[
∇Xa

∇Xa −∇∇XaX
a

]
f

= LapR(f)

where we have used (2),(7), (9) and (15). The result follows. ♦

B Laplace Operators Acting on a 1-form

q

With respect to the rough and Hodge Laplace operators on M defined in the previous section, we show
the following:

Proposition

Let ω ∈ ΓΛ1M on a 4-dimensional orientable Lorentzian manifold M equipped with metric
g and Levi-Civita connection ∇. The difference between the Hodge and rough Laplacian
operators acting on ω is related to the curvature operator of ∇. Specifically:

LapR(ω)− LapH(ω) = Rω̃,Xa
ea. (16)

This proposition can be proven directly using a number of the relations given in the preceding section.
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Proof: Let ω ∈ ΓΛ1M, then using (2) and properties of the connection:

∇Xa
dω = ∇Xa

[
eb ∧∇Xb

ω
]
= ∇Xa

eb ∧∇Xb
ω + eb ∧∇Xa

∇Xb
ω

= −eb(∇XaXc)e
c ∧∇Xb

ω + eb ∧∇Xa∇Xb
ω = −ec ∧∇∇XaXcω + eb ∧∇Xa∇Xb

ω

= eb ∧
[
∇Xa

∇Xb
−∇∇XaXb

]
ω = eb ∧ HessXa,Xb

(ω).

where we also used (15). Using this result and (7) yields:

δdω = −iXa∇Xaω = −iXa

[
eb ∧ HessXa,Xb

(ω)
]

= −ηab HessXa,Xb
(ω) + eb ∧ iXaHessXa,Xb

(ω) (17)

= −LapR(ω) + eb ∧ iXaHessXa,Xb
(ω) (18)

from the definition of the rough Laplacian (9). We may also use (2) and (7) to write:

dδω = d [−iXa∇Xa
ω] = −eb ∧∇Xb

[iXa∇Xa
ω] = −eb ∧∇Xb

[(∇Xa
ω)(Xa)]

= −eb ∧ [(∇Xb
∇Xa

ω)(Xa) + (∇Xa
ω)(∇Xb

Xa)]

= −eb ∧ iXa(∇Xb
∇Xaω)− eb ∧ (∇Xaω)(∇Xb

Xa). (19)

Combining the results (18),(19) and using (8) yields

LapH(ω) = −(δd+ dδ)ω

= LapR(ω)− eb ∧ iXa [HessXa,Xb
−∇Xb

∇Xa ]ω + eb ∧ (∇Xaω)(∇Xb
Xa)

= LapR(ω)− eb ∧ iXa

[
RXa,Xb

−∇∇Xb
Xa

]
ω + eb ∧ (∇Xaω)(∇Xb

Xa)

= LapR(ω)− eb ∧ iXaRXa,Xb
ω

+ eb ∧
[
iXa∇∇Xb

Xa
ω + (∇Xa

ω)(∇Xb
Xa)

]
(20)

using the definition of the curvature operator (3). This can be further simplified by noting that

iXaRXa,Xb
ω = (RXa,Xb

ω )(Xa) = ea(RXa,Xb
ω̃ ) = R(Xa, Xb, ω̃, e

a)

= R(ω̃, ẽa, Xa, X̃b) = R(ω̃,Xa, Xa, eb) = eb(R ω̃,Xa Xa )

= (R ω̃,Xa X̃a )(ẽb) = (R ω̃,Xa ea )(Xb) = iXb
R ω̃,Xa ea = iXb

R ω̃,Xa
ea

using the curvature tensor (5), its symmetry properties (6) and the metric compatibility of the
connection, so that it commutes with the metric dual operation. Using this relation and (1) we
may write the second term in (20) as

eb ∧ iXaRXa,Xb
ω = eb ∧ iXb

R ω̃,Xa
ea = R ω̃,Xa

ea.

Finally we simplify the last term in (20): we note that

(∇Xaω)(∇Xb
Xa) = (∇̃Xb

Xa)(∇̃Xaω) = (∇Xb
ea)(∇Xa ω̃)

by the metric compatibility of ∇. Using (15) yields

(∇Xa
ω)(∇Xb

Xa) = −ea(∇Xb
Xc) · ec(∇Xa

ω̃) = −ea(∇Xb
Xc) · (∇Xa

ω)(Xc)

= −(∇∇Xb
Xcω)(X

c) = −iXa∇∇Xb
Xaω.
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From this it is clear that

iXa∇∇Xb
Xaω + (∇Xaω)(∇Xb

Xa) = iXa∇∇Xb
Xaω − iXa∇∇Xb

Xaω = 0

and the last term in (20) vanishes. Combining these results together yields

LapH(ω) = LapR(ω)−R ω̃,Xa
ea

and the result follows. ♦

C The Levi-Civita Connection

q

In this section we collect a few useful results regarding the Levi-Civita connection:

Proposition

Let f be a (complex) function on a 4-dimensional orientable Lorentzian manifold M equipped
with metric g and Levi-Civita connection ∇. Then

∇f = df (21)

in terms of the exterior derivative d.

This result follows trivially from the definitions in appendix 1:

Proof: Recalling that ∇ ≡ ea ⊗∇Xa
, we have

∇f = ea ⊗∇Xa
f = ea ·Xaf = ea · df(Xa) = ea · iXa

df = df

using (1) and (2). ♦

We now include a result that will be of importance in our construction of solutions to the linearised
Einstein field equations:

Proposition

Let ω ∈ ΓΛ1M be an exact form on a 4-dimensional orientable Lorentzian manifold M
equipped with metric g and Levi-Civita connection ∇. Let ω = df for some function f on
M, then ∇ω is a covariant symmetric rank two tensor on M. Furthermore, if the function f is
harmonic then ∇ω is traceless.

As with the previous propositions, we proceed using the definitions and identities outlined in appendix 1:
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Proof: Let ω ∈ ΓΛ1M be exact: ω = df for some function f on M, then

∇ω = ∇df = ea ⊗∇Xa
df = ea ⊗∇Xa

[
eb ∧∇Xb

f
]

= ea ⊗
[
∇Xa

eb ∧∇Xb
f + eb ∧∇Xa

∇Xb
f
]

= ea ⊗
[
−eb(∇XaXc)e

c ∧∇Xb
f + eb ∧∇Xa∇Xb

f
]

= ea ⊗ ec ∧
[
∇Xa∇Xcf −∇∇XaXcf

]
= HessXa,Xc

(f) ea ⊗ ec.

Since the Hessian operator is symmetric when acting on functions (4), it follows that ∇ω is a
covariant symmetric rank two tensor on M. From 9 we have

tr(∇ω) = (∇ω)(Xi, X
i) = HessXa,Xc(f) e

a(Xi) · ec(Xi) = HessXa,Xc(f) δ
a
i · ηci

= HessXi,Xi(f) = LapR(f)

so that ∇ω = ∇df is traceless if LapR(f) = 0 (i.e. if f is harmonic). The result follows. ♦

These two results imply

∇∇f = ∇df is a covariant symmetric rank two tensor on M and is
traceless if LapR(f) = 0.

(22)

D An Identity Involving the Rough Laplace Operator and the
Divergence Operator

q

Proposition

Let ω ∈ ΓΛ1M be an exact form on a 4-dimensional orientable Lorentzian manifold M
equipped with metric g and Levi-Civita connection ∇. Let ω = df for some function f on
M then

LapR(ω) = Div(∇ω). (23)

This proposition can be proved directly from the definitions and results from appendix 1:

Proof: Let ω ∈ ΓΛ1M with ω = df for some function f on M, then T = ∇ω is a covariant
symmetric rank two on M. We have

∇Xb
T = ∇Xb

(∇ω) = ∇Xb
(ea ⊗∇Xa

ω) = ∇Xb
ea ⊗∇Xa

ω + ea ⊗∇Xb
∇Xa

ω.
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Therefore using (10):

Div(T) = (∇Xb
T)(Xb,−) = (∇Xb

ea)(Xb) · ∇Xaω + ea(Xb) · ∇Xb
∇Xaω

= −ea(∇Xb
Xc) · ec(Xb) · (∇Xb

ea)(Xb) · ∇Xa
ω + ηab ∇Xb

∇Xa
ω

= −ea(∇Xb
Xc) · ηcb · ∇Xa

ω +∇Xb
∇Xbω

= −ea(∇Xb
Xb) · ∇Xaω +∇Xb

∇Xbω

= −∇∇Xb
Xbω +∇Xb

∇Xbω

=
[
∇Xb

∇Xb −∇∇Xb
Xb

]
ω

= LapR(ω)

where we used (9) and (15). The result follows. ♦

E Commutators involving Laplace Operators

q

We begin with a straightforward result following from the definitions of the Hodge Laplace operator:

Proposition

Let f be a (complex) functions on a 4-dimensional orientable Lorentzian manifold M equipped
with metric g and Levi-Civita connection ∇. Then

[LapH , d] f = [LapH ,∇] f = 0. (24)

The equality of the commutators follows from (21) and since LapH is type preserving. Thus, we need only
prove one of the commutators vanishes:

Proof: Let f be a (complex) function on M then by direct computation:

[LapH , d] f = LapH(df)− d [LapH(f)] = −(δd+ dδ)df − d [−(δd+ dδ)f ]

= −δd2f − dδdf + dδdf + d2δf = 0

since the exterior derivative and coderivative are nilpotent: d2 = δ2 = 0. ♦

We now move on to provide a result about commutators involving the rough Laplace operator:

Proposition

Let f be a (complex) functions on a 4-dimensional orientable Lorentzian manifold M equipped
with metric g and Levi-Civita connection ∇. Then

[LapR, d] f = [LapR,∇] f = R d̃f,Xa
(ea). (25)
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As with the previous result, the equality of the commutators follows from LapR being type-preserving and
(21). The result relies on the proposition above and (16):

Proof: Let f be a (complex) function on M then since df ∈ ΓΛ1M:

[LapR, d] f = LapR(df)− d [LapR(f)] = LapH(df) +R d̃f,Xa
(ea)− d [LapH(f)]

left[0.2cm] = [LapH , d] f +R d̃f,Xa
(ea) = R d̃f,Xa

(ea)

using 16) and (24). ♦
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